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The dynamics of an elongated bar in a simple power-law galactic field were 
investigated in [1]. It was shown that the bar has uniform pattern rotation in the 
opposite sense to the direction of its streamline orbits.  

Figure 1: A galactic bar in a simple power-law field

The uniform pattern rotation is achieved because the streamlines of the bar have an
ellipticity profile which precisely equalises the precession rates of all the 
streamlines. Each streamline is slightly less circular than the slightly smaller 
streamline immediately inside it.

Figure 2: The ellipticity profile of the outer bar



This paper extends that investigation to find out what dynamical system may be 
formed by the particles which exist in the region between the inner limit of the bar,
and the galactic centre.

The system of units used is chosen so that a circular orbit of radius r=1 has orbital 
velocity vcirc=1, angular velocity ωcirc=1, and orbital period Tcirc=2π. The axis ratio
of a streamline is defined as its pericentre distance divided by its apocentre 
distance. The total acceleration acting on each particle is assumed to be towards 
the galactic centre, and proportional to its distance from the galactic centre raised 
to some power x, and this paper specifically examines the field in which x=2.

It is not possible to extend the outer bar further inwards by adding further, smaller 
streamlines. This is because there are no further (smaller) streamlines which 
satisfy both of the two strict conditions: that they must have the same pattern 
rotation speed as the outer bar, and that they must be non-intersecting with the 
existing streamlines of the outer bar.

Therefore the particles, which exist in the region between the galactic centre and 
the inner boundary of the outer bar, may form a separate system of streamlines, 
which has a different pattern rotation rate (precession rate) than the outer bar. 

The simple power law gravity field which we are examining here is scale-free. 
This means that the inner system of streamlines (the inner bar) will be a scaled-
down self-similar copy of the outer bar. 

The innermost streamline of the outer bar has apocentre distance = 2, and axis 
ratio = 0.6, therefore it has pericentre distance = 1.2. 

The inner bar will necessarily have a pattern rotation rate (precession) different to 
that of the outer bar. It is essential that the outermost streamline of the inner bar 
must never intersect the innermost streamline of the outer bar, and this must be 
satisfied for all orientations of the inner bar relative to the outer. bar. Therefore the 
apocentre distance of the outermost streamline of the inner bar must be less than 
1.2.



Therefore the apocentre distance of the outermost orbit of the inner bar is here set 
= 1.1, which means that the inner bar is a self-similar copy of the outer bar with 
the scale ratio k = 10.

The scale ratio is defined as: the apocentre distance of a streamline in the outer 
bar, divided by the apocentre distance of the equivalent streamline (the streamline 
with the the same axis ratio) in the inner bar. 

The inner bar has the same ellipticity profile as the outer bar, except that all 
distances are scaled down by the scale ratio k=10, as shown in figure 3.

Figure 3: The ellipticity profile of the inner bar



Ratio of absolute pattern rotation rates of outer and inner bars

Using:

douter= the apocentre distance of a selected streamline of the outer bar 

d inner= the apocentre distance of the equivalent (same axis ratio) streamline of the inner bar 

k= the scale ratio =
douter

d inner

x= the exponent in the simple power-law function for acceleration toward the centre

Ωouterbar= the absolute angular rate of pattern rotation of the outer bar

Ωinnerbar= the absolute angular rate of pattern rotation of the inner bar

The ratio of the absolute pattern rotation rates of the two bars is given by:

Ωouterbar

Ωinnerbar

=k
x−1

2

The values of x and k are then inserted:
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Which, for the example system examined here, gives the result: 

Ωinnerbar=0.316∗Ωouterbar



Dynamics with orbits of inner bar in same sense as orbits of outer bar

There are two possibilities for the dynamics.

In the first possibility, the orbits of the inner bar are in the same sense as the orbits
of the outer bar. 

The resulting pattern rotations of the outer bar and inner bar are illustrated in 
figures 4A to 4F.  

The orbits of both bars are clockwise, as labelled by the arrows. The arrows 
represent the sense of the orbits (not the sense of the pattern rotations).

Each bar has pattern rotation (precession) which is in the opposite sense to its own 
orbits. So the pattern rotation (precession) of both bars is anticlockwise.

The figures show the bars in the inertial frame at sequential time intervals. 

During each interval, between one diagram and the next, the outer bar experiences 
pattern rotation (precession) of 31.6 degrees anticlockwise, and the inner bar 
experiences pattern rotation (precession) of 10 degrees anticlockwise.
  



Figure 4 A

Figure 4 B



Figure 4 C

Figure 4 D



Figure 4 E

Figure 4 F



Dynamics with orbits of inner bar in opposite sense to orbits of outer bar

The second possibility for the dynamics is with the orbits of the inner bar in the 
opposite sense to the orbits of the outer bar. 

The resulting pattern rotations of the outer bar and inner bar are illustrated in 
figures 5A to 5F.  

The orbits of the outer bar are clockwise, and the orbits of the inner bar are 
anticlockwise, as labelled by the arrows. The arrows represent the sense of the 
orbits (not the sense of the pattern rotations).

Each bar has pattern rotation (precession) which is in the opposite sense to its own 
orbits. So the pattern rotation is anticlockwise for the outer bar, but clockwise for 
the inner bar.

During each interval, between one diagram and the next, the outer bar experiences 
pattern rotation (precession) of 31.6 degrees anticlockwise, and the inner bar 
experiences pattern rotation (precession) of 10 degrees clockwise.



Figure 5 A

Figure 5 B
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Streamline parameters 

The starting parameters used by software to produce the orbit streamlines of the 
nested bars described here, are listed in figure 6, using the system of units 
described above. The initial position (x, y) and velocity (vx, vy) are listed for one 
particle of each of 10 example streamlines of the outer bar and 10 example 
streamlines of the inner bar. 
The listed parameters have the orbits of the inner bar in the same sense as the 
orbits of the outer bar, and so they produce the dynamics illustrated in figures 4A 
to 4F. 

Figure 6: Streamline parameters
x y vx vy

0.2 0 0 0.0485

0.3 0 0 0.0595

0.4 0 0 0.0727

0.5 0 0 0.08696

0.6 0 0 0.1008

0.7 0 0 0.1157

0.8 0 0 0.1298

0.9 0 0 0.1440

1.0 0 0 0.1581

1.1 0 0 0.1730

2 0 0 1.5337

3 0 0 1.8816

4 0 0 2.2990

5 0 0 2.7499

6 0 0 3.1876

7 0 0 3.6588

8 0 0 4.1046

9 0 0 4.5537

10 0 0 5.0000

11 0 0 5.4707

The other possibility, in which the orbits of the inner bar are in the opposite sense 
to the orbits of the outer bar, is produced by simply multiplying the initial vy 
values of the 10 streamlines of the inner bar by -1, which will produce the 
dynamics illustrated in figures 5A to 5F.



 
Generalisation to other simple power-laws in the range x>1

In a separate paper, the dynamics of bars (and nested bars) which have been 
successfully constructed in the (x=1.5) field will be described and illustrated.
The innermost streamline of a bar in that field is much more circular than in the 
(x=2) field. Nested bars in the (x=1.5) field resemble observed nested bars even 
better than those illustrated here in the (x=2) field.

Conclusions

This investigation based on simple power-law fields indicates that:

A galactic bar has an inner boundary, beyond which further smaller co-precessing 
streamlines cannot be added.
Particles existing in the region between that inner boundary, and the galactic 
centre, and may form an inner bar.
The inner bar has a different pattern rotation rate to the outer bar.
The inner bar is a scaled-down self-similar copy of the outer bar.

The outer bar has pattern rotation in the opposite sense to its own orbits.
The inner bar has pattern rotation in the opposite sense to its own orbits.

There are two possibilities for the dynamics:
A. If the orbits of both bars are clockwise, then the pattern rotations of both bars 
are anticlockwise.
B. If the orbits of the outer bar are clockwise, and the orbits of the inner bar are 
anticlockwise, then the pattern rotation of the outer bar is anticlockwise, and the 
pattern rotation of the inner bar is clockwise.

The inner bar has a slower absolute pattern rotation rate than the outer bar.

The ratio of the absolute pattern rotation rates of the outer and inner bars can be 
calculated from the power-law exponent and the scale ratio.



Discussion

This investigation uses computer modelling based on the assumption that every  
orbital streamline of a bar interacts with its neighbour streamlines, and that the 
effect of the interactions is to modify the ellipticity of each streamline, producing a
precisely-tuned ellipticity profile, so that every streamline of the bar has exactly 
the same precession rate.
There is a clear and strong precedent for this remarkable mechanism, and that is in
the dynamics of the eccentric rings of Uranus and Saturn [2].  The very existence 
of these eccentric rings is the beautiful result of the streamlines interacting to 
produce exactly the precise eccentricity profile which makes the precession rate of
every streamline equal. [3] [4]

This study, based on simple power-law fields in the range x>1, indicates that the 
inner bar will have a slower absolute pattern rotation rate than the outer bar. 
Generally the literature presents the inner bar as having an absolute pattern 
rotation rate which is equal to or greater than that of the outer bar. However, as 
pointed out in [5], systems with inner bar rotating slower than the outer bar have 
never been excluded on theoretical grounds. 
The possibility that an inner bar may have a slower absolute pattern rotation rate 
than the main bar was proposed by [6] based on modelling of nested bars, which 
produced in some models a nuclear gaseous bar persisting for a limited time with 
pattern rotation 2 to 3 times slower than that of the main bar.



References

[1] Edgeworth, S.
Galactic bars in power law fields
www.orbsi.uk/space/research/se/pdf/galactic-bars-in-power-law-fields.pdf

[2] Murray M, Dermott S, 
Solar System Dynamics, 
ISBN-13: 978-0521575973 
http://books.google.co.uk/books?id=aU6vcy5L8GAC&printsec=frontcover
Section 10.5.1, Spreading Timescales, pages 495-498 .

[3] Ibid, Section 10.5.4, Eccentric and Inclined Rings, pages 506-510 .

[4] French R, Nicholson P, Porco C, Marouf E, 
Dynamics and Structure of the Uranian Rings, 
Uranus (edited by Bergstralh J, Miner E, Matthews M), 
ISBN-13: 978-0816512089, 
http://books.google.co.uk/books?id=fbDldZ1_E20C&pg=PA408 
Page 408.

[5] Maciejewski W, 
Response of the integrals in the Tremaine–Weinberg method to multiple pattern 
speeds: a counter-rotating inner bar in NGC 2950? 
http://arxiv.org/pdf/astro-ph/0602520v2.pdf 
Page 1.

[6] Shlosman I, 
Dynamics of the Central kpc in Barred Galaxies: Theory and Modeling 
ASP Conference Series, Vol. xxx, 2001 
http://arxiv.org/pdf/astro-ph/0202004v1.pdf 
Pages 69-70.

[7] Ibid, page 77.

http://arxiv.org/pdf/astro-ph/0202004v1.pdf
http://www.orbsi.uk/space/research/se/pdf/galactic-bars-in-power-law-fields.pdf
http://arxiv.org/pdf/astro-ph/0602520v2.pdf
http://books.google.co.uk/books?id=fbDldZ1_E20C&pg=PA408
http://books.google.co.uk/books?id=aU6vcy5L8GAC&printsec=frontcover

